Sugarcane for water-limited environments. Variation in stomatal conductance and its genetic correlation with crop productivity.

نویسندگان

  • J Basnayake
  • P A Jackson
  • N G Inman-Bamber
  • P Lakshmanan
چکیده

Stomatal conductance (g(s)) and canopy temperature have been used to estimate plant water status in many crops. The behaviour of g(s) in sugarcane indicates that the internal leaf water status is controlled by regular opening and closing of stomata. A large number of g(s) measurements obtained across varying moisture regimes, locations, and crop cycles with a diverse sugarcane germplasm composed of introgression, and commercial clones indicated that there is a high genetic variation for g(s) that can be exploited in a breeding programme. Regardless of the environmental influences on the expression of this trait, moderate heritability was observed across 51 sets of individual measurements made on replicated trials over 3 years. The clone×water status interaction (G×E) variation was smaller than the clone (G) variation on many occasions. A wide range of genetic correlations (r(g)= -0.29 to 0.94) between g(s) and yield were observed across test environments in all three different production regions used. Canopy conductance (g(c)) based on g(s) and leaf area index (LAI) showed a stronger genetic correlation than the g(s) with cane yield (tonnes of cane per hectare; TCH) at 12 months (mature crop). The regression analysis of input weather data for the duration of measurements showed that the predicted values of r(g) correlated with the maximum temperature (r=0.47) during the measurements and less with other environmental variables. These results confirm that the g(c) could have potential as a criterion for early-stage selection of clones in sugarcane breeding programmes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stomatal Density as a Selection Criterion for Developing Tea Varieties with High Physiological Efficiency

Stomata, the small opening in leaf connecting plant with atmosphere, play pivotal roles in global water and carbon cycles. Stomata regulate the two key important physiological functions viz. photosynthesis and transpiration and thus are crucial for performance of crop species in changing climatic conditions. Although environmental factors influence the density and size of stomata, the genetic c...

متن کامل

Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm

Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of...

متن کامل

Genotype–environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes

Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adaptation to a wide range of environments. Here, the genetic basis of 20 physiological and morpholog...

متن کامل

Genotypic variation in transpiration efficiency due to differences in photosynthetic capacity among sugarcane-related clones

Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is ...

متن کامل

Genetic Analysis of Response to Water Deficit Stress Based on Physiological Traits in Wheat

Dehydration is the most important limiting factor in agricultural production in arid and semi-arid regions, and water shortages (especially at the reproductive stages) due to lack of precipitation and unequal distribution are inappropriate for limiting the yield. In this research, cross between the Gasspard cultivar (dehydrated susceptible parent) and DN11 line (resistant parent) was performed....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 66 13  شماره 

صفحات  -

تاریخ انتشار 2015